

Journal of Alloys and Compounds 271-273 (1998) 459-462

Preparation of uranium-based magnetic amorphous alloys by RF sputtering

Y. Homma^{a,*}, Y. Takakuwa^a, Y. Shiokawa^b, K. Suzuki^a

^aIMR, Tohoku University, Sendai 980-77, Japan ^bOarai Facility, IMR, Tohoku University, Oarai, Ibaraki 311-13, Japan

Abstract

The effects of amorphization on ferromagnetic uranium compounds UGe_2 and UGa_2 were investigated. The amorphous alloys a- UGe_2 and a- UGa_2 were successfully produced by radio frequency (RF) sputtering. The ferromagnetic exchange of a- UGe_2 is comparable with the crystalline compound. On the contrary, the ordering temperature and the magnetic moment of a- UGa_2 are strongly reduced. The magnetic responses and the electron-transport properties of the alloys are different from those of the ferromagnetic crystalline counterparts, because the collinear spin arrangement was scattered by the random anisotropy originating from the orbital angular momentum of uranium ions. © 1998 Elsevier Science S.A.

Keywords: Amorphous alloy; UGe₂; UGa₂; Magnetism; Random anisotropy; Sputtering

1. Introduction

In spite of the progress in the study of amorphous magnetism during past 20 years, not many studies have been reported on the actinide amorphous alloys in comparison with the transition-metal and rare-earth amorphous alloys. Nevertheless, the magnetism of the crystalline uranium compounds showing a large variety of ground states is an important field of solid-state physics. It seems that this stagnancy of the studies on the actinide amorphous alloys is caused by a difficulty in sample preparation. Recently our group, however, changed the subject from cerium-based amorphous alloys [2,3].

Sputter deposition is a particularly efficient technique for preparing amorphous alloys, however, there are some difficulties in cleaning an inner wall of the chamber contaminated by scattered materials. This is a rather serious problem for radioactive materials. Therefore, we made a sputtering machine modified for the preparation of uranium-based amorphous alloys in a glove box.

First of all, we tried to make the two uranium-based amorphous alloys a-UGe₂ and a-UGa₂. The crystalline counterpart UGe₂ is a typical itinerant ferromagnet with a high magnetic anisotropy below T_c =52 K [4], whereas the 5f electrons are relatively localized in the ferromagnetic compound UGa₂ having $T_{\rm C}$ =125 K [5]. In this work, the magnetic and electrical properties of a-UGe₂ and a-UGa₂ were investigated.

2. Sample preparation

An RF magnetron system was employed to confine an argon plasma into a narrow space between the alloy target and substrate. A deposition rate of about 10 Ås⁻¹ was achieved using alloy targets of 30 mm in diameter and a bulk amorphous sample of 100 μ m thickness could be deposited on water-cooled Cu substrate within a few days operation. The alloy targets were prepared by arc melting using 99.9% uranium, 99.9999% germanium and 99.9999% gallium.

Fig. 1 shows X-ray diffraction patterns of the a-UGe₂ and a-UGa₂. The first peaks for both alloys were broadened to over 7°, and are followed by weak oscillations for angles of $2\theta > 45^{\circ}$. Thus, we confirm these samples as amorphous alloys with considerable atomic randomness. The bar diagrams indicate the calculated relative intensities of the UGe₂ and UGa₂ having ThGe₂-type (Cmmm) [6] and AlB₂-type (P6/mmm) [7] structure, respectively. The main peak of a-UGe₂ is situated at a slightly lower angle than the dominant (131) reflection of the crystalline compound UGe₂. On the contrary, the dominant peak position of the a-UGa₂ is strongly shifted

^{*}Corresponding author. Tel.: (81-22) 215-2120; fax: (81-22) 215-2121; e-mail: yhomma@imr.tohoku.ac.jp

^{0925-8388/98/\$19.00 © 1998} Elsevier Science S.A. All rights reserved. PII: S0925-8388(98)00111-X

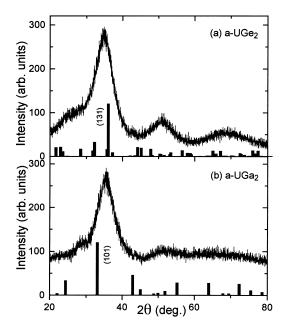


Fig. 1. X-ray diffraction patterns of (a) a-UGe₂ and (b) a-UGa₂.

up from the (101) reflection of the UGa_2 crystal. Considering these diffraction patterns as reflecting predominantly the uranium–uranium correlation, the amorphization shrinks the uranium–uranium nearest neighbour distance in the UGa_2 system.

3. Magnetic properties

Temperature dependence of the magnetization was obtained by a vibrating sample magnetometer in a field of 10 kOe. Fig. 2(a) and (b) show the reduced magnetization, M/H, and its inverse, H/M, for a-UGe₂ and a-UGa₂. The M/H of a-UGe₂ shows a strong increase below 80 K similar to the crystalline counterpart. On the other hand, the increase in the M/H of a-UGa₂ is not so large in comparison with the ferromagnetic UGa₂ compound. By an extrapolation from the high-temperature Curie-Weiss behaviour we obtained estimates of the paramagnetic Curie temperature, θ_{n} , 75 K (for a-UGe₂) and 7 K (for a-UGa₂). The suppression of the ferromagnetic exchange interaction induced by amorphization is more remarkable in a-UGa₂ rather than in a-UGe₂, because the Curie temperature $T_{\rm C}$ is 52 and 125 K for UGe2 and UGa2, respectively. The effective magnetic moments, μ_{eff} , in the paramagnetic state were estimated to be 2.1 and 1.4 $\mu_{\rm B}/{\rm U}$ for a-UGe₂ and a-UGa2: both of them are rather smaller than those of the uranium ions (3.62 $\mu_{\rm B}/{\rm U}$ for ${\rm U}^{3+}$ and 3.58 $\mu_{\rm B}/{\rm U}$ for U^{4+}) and of the crystalline counterparts (2.5 $\mu_{\rm B}/U$ for UGe₂ [3] and 3.5 for UGa₂ [4]).

The field dependence of the magnetization for the amorphous alloys was measured at 4.2 K by a sampleextracting magnetometer in the hybrid magnet. As shown in Fig. 3, both curves show strong hysteresis with the

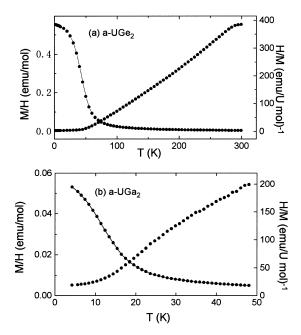


Fig. 2. Temperature dependence of reduced magnetization, M/H, and its inverse values, H/M, for (a) a-UGe₂ and (b) a-UGa₂.

remanent magnetization of 0.48 and 0.18 $\mu_{\rm B}/{\rm U}$ for a-UGe₂ and a-UGa₂, respectively. In particular, for fields below 40 kOe, there are obvious differences between initial and reverse curves. The magnetic moments in the field of 300 kOe of the a-UGe₂ never reach the values of saturated moment for the single crystal sample along the c-axis, which is the easy magnetization direction (1.43 $\mu_{\rm B}/{\rm U}$) [3]. Amorphization reduced effectively the magnetic moments, especially for the UGa₂ system: the moment of a-UGa₂ in the field of 300 kOe is smaller than one fourth of the saturated moment for the compound (2.7 $\mu_{\rm B}/{\rm U}$) [4]. These non-saturated magnetizations seem to be affected by the random anisotropy around partially localized uranium ions having large orbital angular momentum [8].

An Arrott plot is a powerful analysis to investigate the manner of ferromagnetic phase transition. Mean-field-

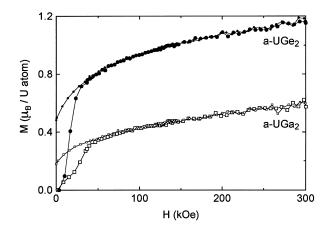


Fig. 3. High-field magnetization curves of a-UGe₂ and a-UGa₂.

theory predicts that H/M should be linear in M^2 . Intercepts along the abscissa give the inverse susceptibilities for the paramagnetic phase and intercepts along the positive ordinate represent the squares of the spontaneous magnetization for the ordering phase. The effect on random anisotropy for the Arrott plot can be understood from the following equation [9]:

$$\frac{H}{M} = \left(\frac{T - T_{\rm C}}{T_{\rm C}}\right) + M^2 \left\{1 + A\left(\frac{H}{M}\right)^{-\varepsilon/2}\right\}.$$
(1)

 $T_{\rm C}$ is the ordering temperature and $\varepsilon = 1 - d$ where *d* is the dimensionality of the system. For the collinear ferromagnets, the ordering temperature $T_{\rm C}$ means the Curie temperature. Since the factor *A* is proportional to the square of a ratio of the random anisotropy to the average exchange, $(D/J)^2$, the plots deviate from straight lines when the random anisotropy is strong [10]. As shown in Fig. 4(a), the curves for several temperatures of a-UGe₂ form lines parallel to each other similar to collinear ferromagnets when the applied field is high enough. At low field, however, the curves bend downward for temperatures of 20 and 30 K which are lower than $T_{\rm C}$. It seems that the extrapolations of these curves never cross the positive ordinate, which indicates no spontaneous magnetization at any temperature. On the other hand, curvature of the Arrott

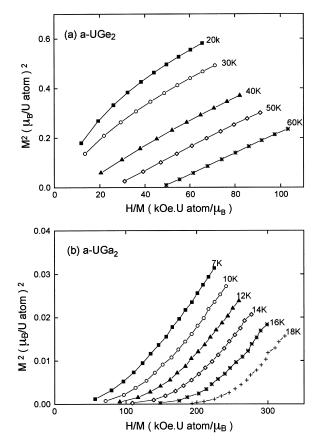


Fig. 4. Arrott plots for (a) a-UGe₂ and (b) a-UGa₂.

plot remains positive for all measured temperatures of the $a-UGa_2$ as shown in Fig. 4(b).

4. Electrical properties

Electrical resistivity was measured by a conventional four-probe method. The normalized resistivity at 300 K was plotted in Fig. 5. In this work, we performed a measurement down to 50 mK for a-UGe₂. A resistivity minimum was observed at 88 and 43 K for a-UGe₂ and a-UGa₂, respectively. The same types of behaviours are sometimes found in the rare-earth [11] and uranium-based [12] amorphous alloys containing the non-S state ions with orbital angular momentum. In these cases, the negative temperature coefficient of resistivity is interpreted by the coherent scattering model taking account of the waves scattered by the exchange interaction on neighbour magnetic ions. Fert et al. found the following expression of the magnetic resistivity due to exchange scattering [13]:

$$\rho_m = \rho_{\rm M} [c_{\rm ion} + c_{\rm ion}^2 m (2k_{\rm F})], \qquad (2)$$

where c_{ion} is a concentration of non-S state magnetic ions. The ρ_M gives the contribution from the independent scattering by each single ion. Since $m(2k_F)$ is the correlation function between magnetic ions, the second term results from the coherent scattering. Therefore, the fact that the resistivity minima are situated at temperatures higher than T_C in both samples implies the growth of the spin– spin correlation even above T_C . The weak temperature dependence in the resistivity of a-UGe₂ below 1 K is supposed to reflect the frozen moment.

Fig. 6 shows the temperature dependence of the longitudinal magnetoresistance for the same applied magnetic field. The signs of the magnetoresistance changed from positive to negative at around 50 and 20 K for a-UGe₂ and a-UGa₂, respectively. It suggests that interference by the coherent scattering is depressed when the

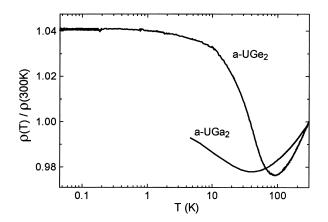


Fig. 5. Temperature dependence of normalized resistivities of a-UGe $_{\rm 2}$ and a-UGa $_{\rm 2}.$

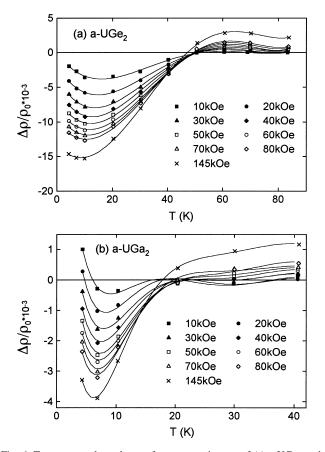


Fig. 6. Temperature dependence of magnetoresistance of (a) a-UGe $_2$ and (b) a-UGa $_2$ for several magnetic fields.

magnetic spin–spin correlation was grown below ordering temperature. The same behaviour was observed in rareearth amorphous alloys such as a-TbAg where the antiferromagnetic correlations exist [14].

5. Conclusion

Amorphous alloys a-UGe₂ and a-UGa₂ were successfully produced by the RF sputtering installed in the glove box. a-UGe₂ possesses the ferromagnetic exchange comparable with the crystalline compound. On the contrary, the ordering temperature and the magnetic moments of a-UGa₂ are strongly reduced. In both alloys, the magnetic

responses are different from those of the ferromagnetic crystalline counterparts, because the collinear spin arrangement was disturbed by the random anisotropy. Typical resistivity minima in present alloys suggest the existence of the spin–spin correlation between non-S state uranium ions possessing the orbital angular momentum.

Acknowledgements

The authors wish to thank Dr. H. Kato, Dr. S. Sakatsume, Dr. N. Sato for the help in measurements and also thank Dr. I. Sato, Mr. M. Takahashi and Mr. S. Miura for their management of the radioactive materials. This work was supported by a Grant-in-Aid for Scientific Research on Priority Areas and on Exploratory Research from the Ministry of Education, Science and Culture of Japan.

References

- Y. Homma, K. Sumiyama, H. Yamauchi, K. Suzuki, J. Phys. Soc. Jpn. 66 (1997) 1457.
- [2] K. Suzuki, F. Wastin, A. Ochiai, T. Shikama, Y. Suzuki, Y. Shiokawa, T. Mitsugashira, T. Suzuki, T. Komatsubara, J Alloys Comp. 213–214 (1994) 178.
- [3] Y. Homma, Y. Shiokawa, K. Suzuki, Y. Haga, E. Hotta, T. Suzuki, Physica B 206–207 (1995) 467.
- [4] Y. Onuki, I. Ukon, S.W. Yun, I. Umehara, K. Satoh, T. Fukuhara, H. Sato, S. Takayanagi, M. Shikama, A. Ochiai, J. Phys. Soc. Jpn. 61 (1992) 293.
- [5] A.V. Andreev, K.P. Belov, A.V. Deriagin, R.Z. Levitin, A. Menovsky, J. Phys. Colloq. 40 (1979) C4–82.
- [6] K. Oikawa, T. Kamiyama, H. Asano, Y. Onuki, M. Kohgi, J. Phys. Soc. Jpn. 65 (1996) 3229.
- [7] T.B. Massalski, Binary Phase Diagrams, ASM International, Tennessee, 1990.
- [8] P.P. Freitas, T.S. Plaskett, T.R. McGuire, J. Appl. Phys. 63 (1988) 3746.
- [9] B. Dieny, B. Barbara, J. Phys. (Paris) 46 (1985) 293.
- [10] A. Aharony, E. Pytte, Phys. Rev. Lett. 45 (1980) 1583.
- [11] A. Fert, R. Asomoza, J. Appl. Phys. 50 (1979) 1886.
- [12] P.P. Freitas, T.S. Plaskett, J.M. Morerira, V.S. Amaral, J. Appl. Phys. 64 (1988) 5453.
- [13] R. Asomoza, A. Fert, I.A. Campbell, R. Meyer, J. Phys. F: Metal Phys. 7 (1977) L327.
- [14] A.K. Bhattacharjee, B. Coqblin, J. Phys. F: Metal Phys. 8 (1978) L211.